Амплитуда генерируемого сигнала в таких генераторах очень стабильна и близка к напряжению питания. Но форма колебаний весьма далека от синусоидальной — сигнал получается импульсным, причем длительность импульсов и пауз между ними легко регулируется. Импульсам легко придать вид меандра, когда длительность импульса равна длительности паузы между ними. Основной и широко распространенный вид релаксационного генератора — симметричный мультивибратор на двух транзисторах, схема которого показана на рисунке ниже. В нем два стандартных усилительных каскада на транзисторах VT1 и VT2 соединены в последовательную цепочку, то есть выход одного каскада соединен со входом другого через разделительные конденсаторы С1 и С2. Они же определяют и частоту генерируемых колебаний F, точнее, их период Т. Напомню, что период и частота связаны простым соотношением Если схема симметрична и номиналы деталей в обоих каскадах одинаковы, то и выходное напряжение имеет форму меандра. Работает генератор так: сразу после включения, пока конденсаторы С1 и С2 не заряжены, транзисторы оказываются в «линейном» усилительном режиме, когда резисторами R1 и R2 задается некоторый малый ток базы, он определяет в Вст раз больший ток коллектора, и напряжение на коллекторах несколько меньше напряжения источника питания за счет падения напряжения на резисторах нагрузки R3 и R4. При этом малейшие изменения коллекторного напряжения (хотя бы из-за тепловых флуктуаций) одного транзистора передаются через конденсаторы С1 и С2 в цепь базы другого. Предположим, что коллекторное напряжение VT1 чуть-чуть понизилось. Это изменение передается через конденсатор С2 в цепь базы VT2 и немного его запирает. Коллекторное напряжение VT2 возрастает, и это изменение передается конденсатором С1 на базу VT1, он отпирается, его коллекторный ток возрастает, а коллекторное напряжение понижается еще больше. Процесс происходит лавинообразно и очень быстро. В результате транзистор VT1 оказывается полностью открыт, его коллекторное напряжение будет не более 0,05. 0,1 В, a VT2 — полностью заперт, и его коллекторное напряжение равно напряжению питания. Теперь надо ждать, пока перезарядятся конденсаторы С1 и С2 и транзистор VT2 приоткроется током, текущим через резистор смещения R2. Лавинообразный процесс пойдет в обратном направлении и приведет к полному открыванию транзистора VT2 и полному запиранию VT1. Теперь нужно ждать еще полпериода, нужные для перезарядки конденсаторов. Время перезарядки определяется напряжением питания, током через резисторы Rl, R2 и емкостью конденсаторов Cl, С2. При этом говорят о «постоянной времени» цепочек Rl, С1 и R2, С2, примерно соответствующей периоду колебаний. Действительно, произведение сопротивления в омах на емкость в фарадах дает время в секундах. Для номиналов, указанных на схеме рисунка 1 (360 кОм и 4700 пФ), постоянная времени получается около 1,7 миллисекунды, что говорит о том, что частота мультивибратора будет лежать в звуковом диапазоне порядка сотен герц. Частота повышается при увеличении напряжения питания и уменьшении номиналов Rl, С1 и R2, С2. Описанный генератор весьма неприхотлив: в нем можно использовать практически любые транзисторы и изменять номиналы элементов в широких пределах. К его выходам можно подключать высокоомные телефоны, чтобы услышать звуковые колебания, или даже громкоговоритель — динамическую головку с понижающим трансформатором, например абонентский трансляционный громкоговоритель. Так можно организовать, например, звуковой генератор для изучения азбуки Морзе. Телеграфный ключ ставят в цепи питания, последовательно с батареей. Поскольку два противофазных выхода мультивибратора в радиолюбительской практике нужны редко, автор задался целью сконструировать более простой и экономичный генератор, содержащий меньше элементов. То, что получилось, показано на следующем рисунке. Здесь использованы два транзистора с разными типами проводимости — п-р-п и р-n-р. Открываются они одновременно, коллекторный ток первого транзистора служит током базы второго. Вместе транзисторы образуют также двухкаскадный усилитель, охваченный ПОС через цепочку R2,C1. Когда транзисторы запираются, напряжение на коллекторе VT2 (выход 1 В) падает до нуля, это падение передается через цепочку ПОС на базу VT1 и полностью его запирает. Когда конденсатор С1 зарядится до примерно 0,5 В на левой обкладке, транзистор VT1 приоткроется, через него потечет ток, вызывая еще больший ток транзистора VT2; напряжение на выходе начнет расти. Это возрастание передается на базу VT1, вызывая еще большее его открывание. Происходит вышеописанный лавинообразный процесс, полностью отпирающий оба транзистора. Через некоторое время, нужное для перезарядки С1, транзистор VT1 призакроется, поскольку ток через резистор большого номинала R1 недостаточен для его полного открывания, и лавинообразный процесс разовьется в обратном направлении. Скважность генерируемых импульсов, то есть соотношение длительностей импульса и паузы, регулируется подбором резисторов R1 и R2, а частота колебаний — подбором емкости С1. Устойчивой генерации при выбранном напряжении питания добиваются подбором резистора R5. Им же в некоторых пределах можно регулировать выходное напряжение. Так, например, при указанных на схеме номиналах и напряжении питания 2,5 В (два дисковых щелочных аккумулятора) частота генерации составила 1 кГц, а выходное напряжение — ровно 1 В. Потребляемый от батареи ток получился около 0,2 мА, что говорит об очень высокой экономичности генератора. Нагрузка генератора R3, R4 выполнена в виде делителя на 10, чтобы можно было снимать и меньшее напряжение сигнала, в данном случае 0,1 В. Еще меньшее напряжение (регулируемое) снимается с движка переменного резистора R4. Эта регулировка может оказаться полезной, если нужно определить или сравнить чувствительность телефонов, проверить высокочувствительный УНЧ, подав малый сигнал на его вход, и так далее. Если же таких задач не ставится, резистор R4 можно заменить постоянным или сделать еще одно звено делителя (0,01 В), добавив снизу еще резистор номиналом 27 Ом. Сигнал прямоугольной формы с крутыми фронтами содержит широкий спектр частот — кроме основной частоты F, еще и ее нечетные гармоники 3F, 5F, 7F и так далее, вплоть до радиочастотного диапазона. Поэтому генератором можно проверять не только звуковую аппаратуру, но и радиоприемники. Конечно, амплитуда гармоник убывает с ростом их частоты, но достаточно чувствительный приемник позволяет прослушивать их во всем диапазоне длинных и средних волн. |
Читайте также: Гидроизоляция фундамента рулонными материалами технониколь
Схема генератора прямоугольных импульсов представляет собой кольцо из двух инверторов. Функции первого из них выполняет транзистор VT2, на входе которого включен эмиттерный повторитель на транзисторе VT1. Это сделано для повышения входного сопротивления первого инвертора, благодаря чему появляется возможность генерации низких частот при относительно небольшой емкости конденсатора С7. На выходе генератора включен элемент DD1.2, выполняющий роль буферного элемента, улучшающего согласование выхода генератора с испытуемой цепью.
Последовательно с времязадающим конденсатором (нужная величина емкости подбирается переключателем SA1) включен резистор R1, изменением сопротивления которого регулируется выходная частота генератора. Для регулировки скважности выходного сигнала (отношения периода импульса к его длительности) в схему введен резистор R2.
Устройство генерирует импульсы положительной полярности частотой 0,1 Гц. 1 МГц и скважностью 2. 500. Частотный диапазон генератора разбит на 7 поддиапазонов: 0,1. 1, 1 .10, 10. 100, 100. 1000 Гц и 1. 10, 10. 100, 100. 1000 кГц, которые устанавливаются переключателем SA1.
В схеме можно использовать кремниевые маломощные транзисторы с коэффициентом усиления не менее 50 (например, КТ312, КТ315, КТ342 и т. п.), интегральные схемы К155ЛНЗ, К155ЛН5.
Генератор прямоугольных импульсов на микроконтроллере на этой схеме, будет отличным пополнением в вашу домашнюю измерительную лабораторию.
Особенностью этой схемы генератора является фиксированное число частот, а точнее 31. И его можно применять в различных цифровых схемотехнических решениях, где требуется изменять частоты генератора автоматически или с помощью пятью переключателей.
Выбора той или иной частоты осуществляется с помощью посылки пятиразрядного двоичного кода на входе микроконтроллера.
Схема собрана на одном из самом распространенном микроконтроллере Attiny2313. Делитель частоты с регулируемым коэффициентом деления построен программно, используя частоту кварцевого генератора в роли опорной.
Для прошивки микроконтроллера Attiny2313 USB программатором, требуется выбрать следующие фьюзы CLKSEL 3…0 = 1111 в программе CodeVisionAVR
Принципиальная электрическая схема генератора прямоугольных импульсов показана на рисунке. Используя ШИМ-регулятор KA7500В (TL494 немного хуже, так как нет 100% регулировки ШИМ), можно изготовить неплохой генератор прямоугольных импульсов (20 Гц. 200 кГц) с регулировкой скважности 0. 100%. При этом можно использовать две независимых схемы коммутации с применением схемы с общим эмиттером или общим коллектором (до 250 мА и 32 В), или параллельное включение (до 500 мА). Если вывод 13 переключить с «земляного» на 14-й (стабилизированное 5 В), то выходы будут включаться попеременно.
Согласно документации, КА7500В должна работать при напряжении от 7 до 42 В и токе на каждом выходе до 250 мА. Однако у автора при напряжении выше 35 В микросхемы «стреляли». По току микросхемы на верхних пределах не проверялись из-за боязни сжечь их. Имевшиеся экземпляры микросхем работали и в диапазоне частот от долей герц до 500. 1000 кГц (в верхнем диапазоне ШИМ, естественно, хуже из-за увеличения общей доли времени на переключение компараторов и выходных ключей).
Сопротивление резистора на входе генератора должно быть в пределах от 1 кОм до 100 МОм, но изменение частоты нелинейное. А вот изменение частоты от емкости на входе линейное, по крайней мере, до 10 мкФ большие значения автор не пробовал). Точность установки или больший диапазон (от долей герц до 500. 1000 кГц) можно расширить, применив большее количество диапазонов.
Генераторы импульсов являются важной составляющей многих радиоэлектронных устройств. Простейший генератор импульсов (мультивибратор) может быть получен из двух-каскадного УНЧ (рис. 6.1). Для этого достаточно соединить вход усилителя с его выходом. Рабочая частота такого генератора определяется значениями R1C1, R3C2 и напряжением питания. На рис. 6.2, 6.3 показаны схемы мультивибраторов, полученные простой перестановкой элементов (деталей) схемы, изображенной на рис. 6.1. Отсюда следует, что одну и ту же простейшую схему можно изобразить различными способами.
Практические примеры использования мультивибратора приведены на рис. 6.4, 6.5.
На рис. 6.4 показана схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов, включенных в качестве нагрузки в цепи коллекторов. Вращением ручки потенциометра R3 можно управлять соотношением длительностей свечения светодиодов левой и правой ветвей. Если увеличить емкость конденсаторов С1 и С2, частота генерации понизится, светодиоды начнут мигать. При уменьшении емкости этих конденсаторов частота генерации возрастает, мелькание светодиодов сольется в сплошное свечение, яркость которого будет зависеть от положения ручки потенциометра R3. На основе подобного схемного решения могут быть собраны разнообразные полезные конструкции, например, регулятор яркости светодиодного фонарика; игрушка с мигающими глазами; устройство плавного изменения спектрального состава источника излучения (разноцветные светодиоды или миниатюрные лампочки и светосуммирую-щий экран).
Генератор переменной частоты (рис. 6.5) конструкции В. Цибульского позволяет получать плавно изменяющееся со временем по частоте звучание [Р 5/85-54]. При включении генератора его частота возрастает с 300 до 3000 Гц за 6 сек (при емкости конденсатора СЗ 500 мкФ). Изменение емкости этого конденсатора в ту или иную сторону ускоряет или, напротив, замедляет скорость изменения частоты. Плавно изменять эту скорость можно и переменным сопротивлением R6. Для того чтобы этот генератор мог выполнять роль сирены, или быть использованным в качестве генератора качающейся частоты, можно предусмотреть схему принудительного периодического разряда конденсатора СЗ. Такие эксперименты можно рекомендовать для самостоятельного расширения познаний в области импульсной техники.
Управляемый генератор прямоугольных импульсов показан на рис. 6.6 [Р 10/76-60]. Генератор также представляет собой двухкаскадный усилитель, охваченный положительной обратной связью. Для упрощения схемы генератора достаточно соединить эмиттеры транзисторов конденсатором. Емкость этого конденсатора определяет рабочую частоту генерации. В данной схеме для управления частотой генерации в качестве управляемой напряжением емкости использован варикап. Увеличение запирающего напряжения на варикапе приводит к уменьшению его емкости. Соответственно, как показано на рис. 6.7, возрастает рабочая частота генерации.
Варикап, в порядке эксперимента и изучения принципа работы этого полупроводникового прибора, можно заменить простым диодом. При этом следует учитывать, что германиевые точечные диоды (например, Д9) имеют очень малую начальную емкость (порядка нескольких пФ), и, соответственно, обеспечивают небольшое изменение этой емкости от величины приложенного напряжения. Кремниевые диоды, особенно силовые, рассчитанные на большой ток, а также стабилитроны, имеют начальную емкость 100. 1000 пФ, поэтому зачастую могут быть использованы вместо варикапов. В качестве варикапов можно применить и р-n переходы транзисторов, см. также главу 2.
Для контроля работы сигнал с генератора (рис. 6.6) можно подать на вход частотометра и проверить границы перестройки генератора при изменении величины управляющего напряжения, а также при смене варикапа или его аналога. Рекомендуется полученные результаты (значения управляющего напряжения и частоту генерации) при использовании разного вида варикапов занести в таблицу и отобразить на графике (см., например, рис. 6.7). Отметим, что стабильность генераторов на RC-элементах невысока.
На рис. 6.8, 6.9 показаны типовые схемы генераторов световых и звуковых импульсов, выполненные на транзисторах различного типа проводимости. Генераторы работоспособны в широком диапазоне питающих напряжений. Первый из них вырабатывает короткие вспышки света частотой единицы Гц, второй — импульсы звуковой частоты. Соответственно, первый генератор может быть использован в качестве маячка, светового метронома, второй — в качестве звукового генератора, частота колебаний которого зависит от положения ручки потенциометра R1. Эти генераторы можно объединить в единое целое. Для этого достаточно один из генераторов включить в качестве нагрузки другого, либо параллельно ей. Например, вместо цепочки из светодиода HL1, R2 или параллельно ей (рис. 6.8) можно включить генератор по схеме на рис. 6.9. В итоге получится устройство периодической звуковой или светозвуковой сигнализации.
Генератор импульсов (рис. 6.10), выполненный на составном транзисторе (п-р-п и р-п-р), не содержит конденсаторов (в качестве частотозадающего конденсатора использован пьезокерамиче-ский излучатель BF1). Генератор работает при напряжении от 1 до 10 Б и потребляет ток от 0,4 до 5 мА. Для повышения громкости звучания пьезокерамического излучателя его настраивают на резонансную частоту подбором резистора R1.
На рис. 6.11 показан достаточно оригинальный генератор релаксационных колебаний, выполненный на биполярном лавинном транзисторе.
Генератор содержит в качестве активного элемента транзистор микросхемы К101КТ1А с инверсным включением в режиме с «оборванной» базой. Лавинный транзистор может быть заменен его аналогом (см. рис. 2.1).
Устройства (рис. 6.11) часто используют для преобразования измеряемого параметра (интенсивности светового потока, температуры, давления, влажности и т.д.) в частоту при помощи резистивных или емкостных датчиков.
При работе генератора конденсатор, подключенный параллельно активному элементу, заряжается от источника питания через резистор. Когда напряжение на конденсаторе достигает напряжения пробоя активного элемента (лавинного транзистора, динистора или т.п. элемента), происходит разряд конденсатора на сопротивление нагрузки, после чего процесс повторяется с частотой, определяемой постоянной RC-цепи. Резистор R1 ограничивает максимальный ток через транзистор, препятствуя его тепловому пробою. Времязадающая цепь генератора (R1C1) определяет рабочую область частот генерации. В качестве индикатора звуковых колебаний при качественном контроле работы генератора используют головные телефоны. Для количественной оценки частоты к выходу генератора может быть подключен частотомер или счетчик импульсов.
Устройство работоспособно в широком интервале изменения параметров: R1 от 10 до 100 кОм (и даже до 10 МОм), С1 — от 100 пФ до 1000 мкФ, напряжения питания от 8 до 300 В. Потребляемый устройством ток обычно не превышает одного мА. Возможна работа генератора в ждущем режиме: при замыкании базы транзистора на землю (общую шину) генерация срывается. Преобразователь-генератор (рис. 6.11) может быть использован и в режиме сенсорного ключа, простейшего Rx-и Сх-метра, перестраиваемого широкодиапазонного генератора импульсов и т.д.
Генераторы импульсов (рис. 6.12, 6.13) также выполнены на лавинных транзисторах микросхемы К101КТ1 типа п-р-п или К162КТ1 типа р-п-р, динисторах, или их аналогах (см. рис. 2.1). Генераторы работают при напряжении питания выше 9 Б и вырабатывают напряжение треугольной формы. Выходной сигнал снимается с одного из выводов конденсатора. Входное сопротивление следующего за генератором каскада (сопротивление нагрузки) должно в десятки раз превышать величину сопротивления R1 (или R2). Низкоомную нагрузку (до 1 кОм) можно включать в коллекторную цепь одного из транзисторов генератора.
Довольно простые и часто встречающиеся на практике генераторы импульсов (блокинг-генераторы) с использованием индуктивной обратной связи показаны на рис. 6.14 [А. с. СССР 728214], 6.15 и 6.16. Такие генераторы обычно работоспособны в широком диапазоне изменения напряжения питания. При сборке блокинг-генераторов необходимо соблюдать фазировку выводов: при неправильном подключении «полярности» обмотки генератор не заработает.
Подобные генераторы можно использовать при проверке трансформаторов на наличие межвитковых замыканий (см. главу 32): никаким иным методом такие дефекты не могут быть выявлены.
Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год